Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 12(4): 90, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35330961

RESUMO

The poultry industry produces millions of tons of feathers waste that can be transformed into valuable products through bioprocess. The study describes the enhanced keratinase and feather hydrolysate production by Bacillus subtilis AMR. The metabolism of each microorganism is unique, so optimization tools are essential to determine the best fermentation parameters to obtain the best process performance. The evaluation of different propagation media indicated the constitutive production of two keratinases of approximately 80 kDa. The combination of Mn2+, Ca2+, and Mg2+ at 0.5 mM improved the keratinolytic activity and feather degradation 1.5-fold, while Cu2+ inhibited the enzymatic activity completely. Replace yeast extract for sucrose increased the feather hydrolysate production three times. The best feather concentration for hydrolysate production was 1.5% with an inoculum of 108 CFU/mL and incubation at 30 °C. None of the inorganic additional nitrogen sources tested increased hydrolysate production, although (NH4)2SO4 and KNO3 improved enzymatic activity. The optimization process improved keratinolytic activity from 205.4 to 418.7 U/mL, the protein concentration reached 10.1 mg/mL from an initial concentration of 3.9 mg/mL, and the feather degradation improved from 70 to 96%. This study characterized keratinase and feather hydrolysate production conditions offering valuable information for exploring and utilizing AMR keratinolytic strain for feather valorization. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03153-y.

2.
World J Microbiol Biotechnol ; 27(6): 1355-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25187135

RESUMO

In this study, three feather degrading bacterial strains were isolated from agroindustrial residues from a Brazilian poultry farm. Three Gram-positive, spore-forming, rod-shaped bacteria and were identified as B. subtilis 1271, B. licheniformis 1269 and B. cereus 1268 using biochemical, physiologic and molecular methods. These Bacillus spp. strains grew and produced keratinases and peptidases using chicken feather as the sole source of nitrogen and carbon. B. subtilis 1271 degraded feathers completely after 7 days at room temperature and produced the highest levels of keratinase (446 U ml(-1)). Feather hydrolysis resulted in the production of serine, glycine, glutamic acid, valine and leucine as the major amino acids. Enzymography and zymography analyses demonstrated that enzymatic extracts from the Bacillus spp. effectively degraded keratin and gelatin substrates as well as, casein, hemoglobin and bovine serum albumin. Zymography showed that B. subtilis 1271 and B. licheniformis 1269 produced peptidases and keratinases in the 15-140 kDa range, and B. cereus produced a keratinase of ~200 kDa using feathers as the carbon and nitrogen source in culture medium. All peptidases and keratinases observed were inhibited by the serine specific peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF). The optimum assay conditions of temperature and pH for keratinase activity were 40-50°C and pH 10.0 for all strains. For gelatinases the best temperature and pH ranges were 50-70°C and pH 7.0-11. These isolates have potential for the biodegradation of feather wastes and production of proteolytic enzymes using feather as a cheap and eco-friendly substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...